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SUMMARY

Nicotinamide riboside kinase (NRK) has an im-
portant role in the biosynthesis of NAD+ as well
as the activation of tiazofurin and other NR ana-
logs for anticancer therapy. NRK belongs to the
deoxynucleoside kinase and nucleoside mono-
phosphate (NMP) kinase superfamily, although
the degree of sequence conservation is very
low. We report here the crystal structures of
human NRK1 in a binary complex with the reac-
tion product nicotinamide mononucleotide
(NMN) at 1.5 Å resolution and in a ternary
complex with ADP and tiazofurin at 2.7 Å resolu-
tion. The active site is located in a groove
between the central parallel b sheet core and
the LID and NMP-binding domains. The hy-
droxyl groups on the ribose of NR are recog-
nized by Asp56 and Arg129, and Asp36 is the
general base of the enzyme. Mutation of resi-
dues in the active site can abolish the catalytic
activity of the enzyme, confirming the structural
observations.

INTRODUCTION

Nicotinamide adenine dinucleotide (NAD+) is well known

as a coenzyme in oxidation/reduction reactions. NAD+

also serves as a substrate in several biochemical reac-

tions, including ADP ribosylation, protein deacetylation,

and ADP-ribose cyclization, which have important effects

on genome stability, aging, calcium signaling, and other

cellular processes (Berger et al., 2004; Blander and Guar-

ente, 2004; Denu, 2005; Guse, 2005; Khan et al., 2007;

Lee, 2004; Li et al., 2006; Magni et al., 1999, 2004a;

Revollo et al., 2007; Schreiber et al., 2006; Ying, 2006).

NAD+ donates its ADP-ribosyl group in these reactions.

As a result, the glycosidic bond between the nicotinamide

group and the ribose is broken, and the NAD+ molecule is

destroyed. NAD+ biosynthesis is therefore crucial in cells

that undergo rapid turnover of this molecule. For example,

inhibition of NAD+ biosynthesis in cancer cells can lead to

a decrease in cellular NAD+ levels, ultimately causing
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apoptosis (Hasmann and Schemainda, 2003; Khan

et al., 2006).

Several different pathways are known for NAD+ bio-

synthesis (Khan et al., 2007; Magni et al., 1999, 2004a;

Rongvaux et al., 2003). The de novo pathway produces

NAD+ from tryptophan in most eukaryotes, whereas the

salvage pathways produce NAD+ from nicotinic acid (NA)

or nicotinamide. NA is generally acquired from the diet or

from the hydrolysis of nicotinamide, whereas nicotinamide

is the breakdown product of NAD+. The compounds NA

and nicotinamide are first converted to their mononucleo-

tide forms (NAMN or NMN), and then the enzyme NA/nico-

tinamide adenylyltransferase (NMNAT) produces the dinu-

cleotides (NAAD+ or NAD+) (Magni et al., 2004b). NAAD+ is

converted to NAD+ by the enzyme NAD+ synthetase (Jauch

et al., 2005; Rizzi et al., 1996; Wojcik et al., 2006).

Recently, a fourth pathway of NAD+ biosynthesis that

uses nicotinamide riboside (NR) as the starting point was

characterized (Bieganowski and Brenner, 2004). The en-

zyme nicotinamide riboside kinase (NRK) catalyzes the

phosphorylation of NR to produce NMN (Figure 1A), which

can then be converted to NAD+ by NMNAT. NRK is also the

enzyme responsible for the activation of tiazofurin

(Figure 1B) and several other anticancer agents (Biega-

nowski and Brenner, 2004). These compounds are ulti-

mately converted to NAD+ analogs, and their clinical

effects are derived from inhibition of inosine mononucleo-

tide dehydrogenase, the rate-limiting enzyme in guanine

nucleotide biosynthesis (Grifantini, 2000; Jager et al.,

2002; Pankiwicz et al., 2004). Therefore, besides its role

in NAD+ metabolism, NRK is also an important enzyme in

anticancer therapy.

NRK is found in most eukaryotes, from yeast to humans.

There are two isoforms of this enzyme in humans, NRK1

and NRK2. The amino acid sequences of these enzymes

are highly conserved (Figure 1C). They belong to the deox-

ynucleoside kinase (dNK) superfamily (Eriksson et al.,

2002), although the sequence conservation is very low

(less than 20% identity). Weak sequence homology is

also recognized with the nucleoside monophosphate

kinase (NMP kinase) superfamily (Yan and Tsai, 1999).

Currently, no structural information is available on any of

the NRKs. We report here the crystal structures of human

NRK1 in a binary complex with the product NMN at 1.5 Å

resolution and in a ternary complex with tiazofurin and

ADP at 2.7 Å resolution.
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Figure 1. Sequence Alignment of Nicotinamide Riboside Kinases
(A) The chemical reaction catalyzed by nicotinamide riboside kinases (NRKs).

(B) The chemical structure of tiazofurin.

(C) Sequence alignment of human NRK1 (SwissProt entry Q9NWW6), NRK2 (Q9NPI5), and yeast (S. cerevisiae) NRK1 (P53915). The secondary-struc-

ture elements are labeled. Residues shown in red are involved in substrate binding and/or catalysis. Residues in italics are disordered in the current

structure. A dot represents a deletion.
RESULTS AND DISCUSSION

Overall Structure of Human NRK1

The crystal structure of human NRK1 in complex with the

reaction product NMN has been determined at 1.5 Å res-

olution by the selenomethionyl single-wavelength anoma-

lous diffraction (SAD) method (Hendrickson, 1991). The

crystal structure of NRK1 in a ternary complex with ADP

and the anticancer drug tiazofurin has been determined

at 2.7 Å resolution. The refined structures have excellent

agreement with the crystallographic data and the ex-

pected bond lengths, bond angles, and other geometric

parameters (Table 1). The majority of the residues (90%)

are in the most favored region of the Ramachandran

plot, and none of the residues are in the disallowed

region.

The current refined model for the NMN complex con-

tains residues 2–82 and 92–193 of NRK1 (Figure 2A),

and that for the ADP:tiazofurin complex contains residues

2–79 and 92–192 (Figure 2B). No electron density was ob-

served for residues 83–91 and those at the C terminus of

the recombinant protein (including the hexahistidine tag).

These residues are probably disordered in the crystals.

They correspond to regions of poor sequence conserva-

tion among these proteins (Figure 1C). In fact, yeast

NRK1 has an insertion of more than 20 residues in the re-

gion between residues 83 and 91 of human NRK1.
1006 Structure 15, 1005–1013, August 2007 ª2007 Elsevier Ltd
The structure of NRK1 contains a central, five-stranded

parallel b sheet (strands b1–b5), with five a helices on both

faces (Figure 2A). There are two inserts to the central a/b/

a core of the structure. One is in the connection between

strand b2 and helix aB and contains a small b hairpin

(strands b20 and b30). The other insert is in the connection

between b4 and aE and contains a helix (aD). Both inserts

are located at the C-terminal end (referred to as the top,

Figure 2A) of the parallel b sheet in the core and help

form the active site of the enzyme (see below).

The missing segment (residues 83–91) corresponds to

the loop connecting helix aB and strand b3 and is located

at the bottom of the b sheet, far away from the active site

(Figure 2A).

Structural Conservation with Other Kinases

Comparisons with structures in the Protein Data Bank, by

using the program Dali (Holm and Sander, 1993), show that

NRK1 shares significant structural similarity (Z score of

9-15) with a large number of kinases, including members

of the dNK superfamily (Figure 3A) (Eriksson et al., 2002;

Welin et al., 2007), the NMP kinase superfamily (adenylate

kinase, guanylate kinase, UMP kinase) (Figure 3B) (Abele

and Schulz, 1995; Appleby et al., 2005; Stehle and Schulz,

1992; Yan and Tsai, 1999), gluconate kinase (Kraft et al.,

2002), shikimate kinase (Hartmann et al., 2006), thymidy-

late kinase (Lavie et al., 1998a, 1998b), panthothenate
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kinase (Yun et al., 2000), and chloramphenicol phospho-

transferase (Izard and Ellis, 2000). However, the sequence

conservation between NRK1 and these other enzymes is

very low, in the 13%–20% range for structurally equivalent

residues.

The overall structures of these enzymes contain a cen-

tral, five-stranded parallel b sheet, and the active site is

located at the top of this sheet. The two inserts in the

structures provide crucial residues for substrate recogni-

tion and catalysis. Specifically, ATP is bound between

the second insert (known as the LID) and the core of the

enzyme (Figure 3B), whereas the phospho-acceptor sub-

strate is bound between the LID and the first insert

(Figure 3B), also known as the NMP-binding domain.

In most of these structures, the LID contains a helix fol-

lowed by a loop. Two Arg residues, corresponding to

Arg128 and Arg132 in NRK1, are highly conserved in this

region(Figure 1C). The former is important for binding the

adenine base of ATP (Figure 3B), whereas the latter is

important for binding the phosphate groups.

In comparison, the structure of the NMP-binding do-

main is highly divergent among these structures (Figures

2A, 3A, and 3B), reflecting the fact that these enzymes

phosphorylate a diverse set of (small-molecule) sub-

strates. In fact, the small b hairpin structure appears to

be unique to NRK1.

Table 1. Summary of Crystallographic Information

Ligands NMN ADP + Tiazofurin

Space group C2221 P21

Number of unique

NRK1 molecules

1 16

Maximum resolution (Å) 1.5 2.7

Number of

observations

455,572 366,557

Number of reflectionsa 74,763 116,539

Rmerge (%)b 8.7 (46.2) 9.5 (28.0)

I/sI 23.3 (2.8) 13.2 (3.0)

Resolution range used

for refinement (Å)

30–1.5 30–2.7

Completeness (%) 100 (99) 95 (74)

R factor (%)c 19.1 (26.9) 20.7 (30.3)

Rfree (%) 20.6 (27.8) 23.5 (32.8)

Rms deviation in bond

lengths (Å)

0.004 0.010

Rms deviation in bond
angles (�)

1.2 1.5

PDB accession code 2QG6 2QL6

a The number for the selenomethionyl protein includes both

Friedel pairs.
b Rmerge =

P

h

P

i

jIhi � hIhij=
P

h

P

i

Ihi. The numbers in parenthe-

ses are for the highest-resolution shell.
c R =

P

h

jFo
h � Fc

h j=
P

h

Fo
h .
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Binding Mode of NMN and Tiazofurin

The reaction product NMN is bound in a pocket formed by

residues in the LID and NMP-binding domains, with only

minor contributions from residues in the core (Figure 4A).

Both hydroxyl groups on the ribose are recognized by di-

rect hydrogen-bonding interactions to the side chains of

Asp56 and Arg129, and the latter residue also has ion-

pair interactions with the side chain of Asp138. The phos-

phate group is recognized by ionic interactions with the

side chain of Arg132 as well as hydrogen-bonding interac-

tions with the side chains of Thr12, Lys16 (in the P loop),

and Tyr134 (Figure 4A).

The nicotinamide group is surrounded by three aromatic

side chains (Phe39, Tyr55, and Tyr134) and by Pro136.

However, the electron density for this group is rather

weak based on the crystallographic analysis, and the am-

ide group is projected toward the solvent and is not directly

recognized by the enzyme (Figure 4B). The binding mode

of this ring is defined more clearly in the structure of the ter-

nary complex with ADP:tiazofurin (Figure 4C). The struc-

tural analysis confirms that tiazofurin is a substrate mimic

and has essentially the same binding mode as the NR por-

tion of NMN (Figure 4A). The lack of specific recognition of

the nicotinamide ring is consistent with biochemical data

showing that NRK can phosphorylate other pyrimidine

and purine nucleoside substrates (Bieganowski and Bren-

ner, 2004; Sasiak and Saunders, 1996). NRKs could also

play an important role in the biosynthesis of these NMPs.

The structure shows that the 50 hydroxyl group of the ri-

bose in tiazofurin is hydrogen bonded to the side chain of

Asp36 (Figure 4A), suggesting that this residue could be

the general base that deprotonates the hydroxyl group

for catalysis (see below). An acidic side chain is the gen-

eral base for most members of the dNK and NMP kinase

superfamilies of enzymes (Eriksson et al., 2002; Yan and

Tsai, 1999).

Binding Mode of ADP

Clear electron density was observed for the ADP molecule

based on the crystallographic analysis (Figure 5A). The

b-phosphate group interacts with the P loop, 10-GVTNS

GKTT-18, linking strand b1 and helix aA (Figure 5B). One

of the terminal oxygen atoms on the a-phosphate group

is hydrogen bonded to the side chain of Thr18, which is

also conserved among many members of this superfamily

of enzymes (Figure 1C). In the structure of the NMN com-

plex, a phosphate group is bound in a similar position to

that of the b-phosphate of ADP (Figure 5C).

In comparison, the interactions between the adenine

and ribose groups of ADP with the enzyme appear to

be weaker. The hydroxyls on the ribose have no direct

interactions with the enzyme. The adenine base of ADP

has amino-aromatic interactions with the side chain of

Arg128 (Figure 5B), but is otherwise exposed to solvent

(Figure 4B). This Arg residue comes from helix aD in the

LID and is present in many of the structurally related

kinases.

The conformations of the 16 copies of NRK1 in the crys-

tallographic asymmetric unit, in the ternary complex with
013, August 2007 ª2007 Elsevier Ltd All rights reserved 1007

www.ncbi.nlm.nih.gov
www.ncbi.nlm.nih.gov


Structure

Crystal Structure of Human NRK1
Figure 2. Structure of Human NRK1

(A) Schematic representation of the structure of human NRK1 in a binary complex with reaction product NMN (in orange for carbon atoms).

(B) Structure of human NRK1 in a ternary complex with ADP (green) and tiazofurin (black).

This figure was produced with PyMOL (DeLano, 2002).
ADP and tiazofurin, are essentially identical; there is an

rms distance of 0.1 Å among their equivalent Ca atoms.

Human NRK1 is monomeric in solution (unpublished

data and Sasiak and Saunders, 1996). In comparison,

the dNKs are dimeric in solution (Eriksson et al., 2002;

Welin et al., 2007). Noncrystallographic symmetry (NCS)

restraint was applied in the refinement, but reducing the

weight on the NCS restraint did not significantly affect

the structures. On the other hand, there are clear struc-

tural differences between this ternary complex and the
1008 Structure 15, 1005–1013, August 2007 ª2007 Elsevier L
binary complex with NMN. This is especially true for the

LID and the aA helix (Figure 5C), which are involved in

binding ADP. In comparison, the central b sheet has few

structural differences in the two complexes. The rms dis-

tance among 176 equivalent Ca atoms of the 2 structures

is 0.67 Å.

Implications for Catalysis by NRK

Our structures of the binary complex with NMN and the ter-

nary complex with ADP and tiazofurin provide significant
Figure 3. Structural Homologs of NRK1

(A) Schematic representation of the structure of M. mycoides deoxyadenosine kinase in complex with dCTP (Welin et al., 2007).

(B) Schematic representation of the structure of yeast adenylate kinase in complex with Ap5A (Abele and Schulz, 1995).

This figure was produced with PyMOL (DeLano, 2002).
td All rights reserved
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Figure 4. The Binding Modes of NMN and Tiazofurin

(A) The binding site for NMN. Hydrogen-bonding interactions are indicated with blue, dashed lines. The binding mode of tiazofurin is also shown

(in black).

(B) Molecular surface of the active-site region of NRK1, colored based on electrostatic potential.

(C) Final 2Fo � Fc electron density for tiazofurin at 2.7 Å resolution. Contoured at 1s.

(A) and (C) were produced with PyMOL (DeLano, 2002); (B) was produced with Grasp (Nicholls et al., 1991).
insights into the catalysis by NRK. The structural informa-

tion allowed us to produce a model for the enzyme in

complex with its substrates ATP and NR (Figure 6A), as

well as with its products ADP and NMN (Figure 6B). The

structural analysis suggests that Asp36 is the general

base of the enzyme, extracting the proton from the 50

hydroxyl of the NR substrate. In the model, this hydroxyl

is only 3.4 Å from the g-phosphorus atom in ATP and is

in the correct position to initiate nucleophilic attack on

this phosphate. The distance between the g-phosphate

group of ATP and the phosphate group in NMN is 1.7 Å,

suggesting that only a relatively small movement is needed

for the phospho-transfer reaction. The structures show

that the nicotinamide group is not recognized specifically

by the enzyme, suggesting that NRK could be active with

other phospho-acceptors, as has been observed with

tiazofurin and other nucleosides (Bieganowski and Bren-

ner, 2004; Sasiak and Saunders, 1996).

Mutagenesis Studies Confirm the Structural

Observations

To assess the information obtained from the structures,

we selected several residues that appear to play important
Structure 15, 1005–
roles in substrate binding and/or catalysis and character-

ized their functional importance by mutagenesis experi-

ments. The kinetic assay converts the NMN product to

NADH, through the coupling enzymes NMNAT and alco-

hol dehydrogenase (Khan et al., 2006; Revollo et al.,

2004). The substrate NR was produced by dephosphory-

lation of NMN (Bieganowski and Brenner, 2004). The

assays showed that human NRK1 has robust catalytic

activity toward the NR substrate, which has a KM of about

3.7 mM (Figure 7A) (Sasiak and Saunders, 1996).

Mutation of the catalytic base, Asp36, essentially abol-

ished the activity of the enzyme (Figure 7B). Similarly,

mutations of Asp56, which has an important role in recog-

nizing the ribose hydroxyls of NR, and Lys16 in the P loop,

which is crucial for ATP binding, also inactivated the

enzyme. In comparison, mutation of Asp138, ion paired

to Arg129 that is hydrogen bonded to the ribose hy-

droxyls, has only minor effects on catalysis by the enzyme

(Figure 7B). Overall, our structural observations are con-

firmed by the mutagenesis and kinetic studies.

In summary, we have determined the crystal structures

of human NRK1 in a binary complex with its product NMN

and in a ternary complex with ADP and the anticancer
1013, August 2007 ª2007 Elsevier Ltd All rights reserved 1009
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Figure 5. The Binding Mode of ADP

(A) Final 2Fo � Fc electron density for ADP at 2.7 Å resolution. Contoured at 1s.

(B) The binding site for ADP. Hydrogen-bonding interactions are indicated with blue, dashed lines.

(C) Overlay of the structures of the binary complex with NMN (in gray) and the ternary complex with ADP:tiazofurin.

This figure was produced with PyMOL (DeLano, 2002).
drug tiazofurin. The structures reveal a unique conforma-

tion for the NMP-binding domain, distinct from those in

the other enzymes of this superfamily. The structural infor-

mation also provides significant insight into the catalysis

by this enzyme, which has been confirmed by our muta-

genesis experiments.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

Full-length human NRK1 (residues 1–199) was subcloned into the

pET24d vector (Novagen) and overexpressed in Escherichia coli at

20�C. The expression construct introduced a hexahistidine tag at the

C terminus. The soluble protein was purified by nickel-agarose affinity

chromatography, anion-exchange chromatography, and gel-filtration

chromatography. The protein was concentrated to 40 mg/ml in a buffer

containing 20 mM Tris (pH 7.5), 200 mM NaCl, 5 mM DTT, and 5% (v/v)

glycerol and was stored at �80�C.
1010 Structure 15, 1005–1013, August 2007 ª2007 Elsevier
The selenomethionyl protein sample was produced in minimal me-

dia supplemented with specific amino acids to inhibit endogenous me-

thionine biosynthesis (Doublie et al., 1996) and was purified by follow-

ing the same protocol as that used for the native enzyme.

Protein Crystallization

Crystals of selenomethionyl NRK1 in complex with NMN were ob-

tained at 22�C with the sitting-drop vapor-diffusion method. The pro-

tein at 20 mg/ml concentration was incubated with 2 mM NMN (pro-

tein:NMN molar ratio of 1:2) at 4�C for 30 min before setting up

crystal trays. The reservoir solution contained 28% (w/v) PEG 3350,

200 mM NH4Cl, 5 mM DTT, and 5 mM Na2HPO4. The crystals were cry-

oprotected by transfer to the reservoir solution supplemented with 5%

(v/v) glycerol and were flash frozen in liquid propane for data collection

at 100 K. They belong to space group C2221, with cell parameters of

a = 54.72 Å, b = 141.53 Å, and c = 62.09 Å. There is one molecule of

NRK1 in the asymmetric unit.

Crystals of NRK1 in complex with tiazofurin and ADP were obtained

under similar conditions as those for the NMN complex. The protein (20

mg/ml) was incubated with 2 mM tiazofurin and 2 mM ADP
Ltd All rights reserved
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Figure 6. Models for the Substrate and Product Complexes of NRK1

(A) Model of NRK1 in a ternary complex with the substrates ATP and NR. Asp36 is the general base that extracts the proton from NR.

(B) Model of NRK1 in a ternary complex with the products ADP and NMN.

This figure was produced with PyMOL (DeLano, 2002).
(protein:ligand molar ratio of 1:2) at 4�C for 30 min before setting up

trays. The pH of the ADP solution was adjusted to 7.8. The crystals

were washed once with the reservoir solution supplemented with 2

mM tiazofurin and 2 mM ADP and were flash cooled in liquid nitrogen.

They belong to space group P21, with cell parameters of a = 145.71 Å,

b = 99.96 Å, c = 145.59 Å and b = 91.57�. There are 16 NRK1 mono-

mers in the asymmetric unit.

Data Collection and Processing

A selenomethionyl SAD data set at 1.5 Å resolution was collected at 100

K on the NMN complex at the X4A beamline of Brookhaven National

Laboratory. A native reflection data set was collected for the ADP:tiazo-

furin complex at the X29 beamline. The diffraction images were pro-

cessed and scaled with the HKL package (Otwinowski and Minor,

1997). The data processing statistics are summarized in Table 1.

Structure Determination and Refinement

For the NMN complex, the locations of the selenomethionyl atoms

were determined with the program BnP (Weeks and Miller, 1999).

Reflection phases to 1.5 Å resolution were calculated based on the

SAD data and were improved with the program SOLVE/RESOLVE
Structure 15, 1005–10
(Terwilliger, 2003), which also automatically located most of the resi-

dues. The complete atomic model was fit into the electron density

with the program O (Jones et al., 1991). The structure refinement

was carried out with the program CNS (Brunger et al., 1998). The re-

finement statistics are summarized in Table 1.

Crystals of the ADP:tiazofurin complex were microscopically

twinned, possibly due to the fact that the a and c axes of the unit cell

are almost identical, and that the b angle is close to 90�. A twinning

fraction of 0.37 was estimated by CNS, by simulating the hemihedral

twinning case of P4. The structure was solved by molecular replace-

ment with the program Phaser (Storoni et al., 2004). Twinned refine-

ment was carried out with CNS, with the twinning operator l�k h. Non-

crystallographic symmetry restraints were applied to the 16 NRK1

molecules in the asymmetric unit.

Mutagenesis

Mutants of NRK1 were designed based on the structural information,

created with the QuikChange kit (Stratagene), and sequenced to con-

firm the incorporation of the correct mutation. The mutant proteins

were purified by following the same protocol as that used for the

wild-type enzyme.
Figure 7. Mutagenesis Studies Confirm the Structural Observations

(A) Purified NRK1 has robust activity toward the NR substrate. The experimental data (black squares) were fitted to the Michaelis-Menten equation

(red curve) by nonlinear regression, defining the KM and Vmax values. The assay followed the production of NADH, through the coupling enzymes

NMNAT and alcohol dehydrogenase (Bieganowski and Brenner, 2004; Khan et al., 2006; Revollo et al., 2004). Data from one representative exper-

iment of several different repeats are shown.

(B) Mutations in the active-site region can abolish the catalytic activity. The mutants were designed based on the structural information, and their

effects on catalysis were determined by the kinetic assay.
13, August 2007 ª2007 Elsevier Ltd All rights reserved 1011
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NRK Assays

The substrate nicotinamide riboside (NR) was generated by following

a published protocol (Bieganowski and Brenner, 2004), by treating

NMN with calf intestinal alkaline phosphatase (CIP) at 37�C overnight.

A typical reaction contained 20 mM Tris (pH 7.9), 100 mM NaCl, 5 mM

MgCl2, 100 mM NMN (Sigma), and 1500 U CIP (New England Biolabs)

in a volume of 0.5 ml. The NR was separated from CIP by centrifugation

through a 10 kDa filter (Millipore). The quality of this substrate was

analyzed by the NRK1 assay described below, except that the NRK1

enzyme was omitted from the reaction mixture. Typically, no visible

contamination by NMN was detected even when the substrate was

used at high concentrations (�20 mM).

All of the assays were repeated several times to ensure the repro-

ducibility of the experiments. The catalytic activity of NRK1 was deter-

mined by using a coupled enzyme spectrometric assay. Briefly, the

NMN product of NRK was converted to NAD+ with the enzyme NMN/

NAMN adenylyltransferase (NMNAT), and NAD+ was then reduced to

NADH by alcohol dehydrogenase (Sigma) by using ethanol as the sub-

strate (Khan et al., 2006; Revollo et al., 2004). By monitoring the ap-

pearance of NADH at 340 nm, the activity of NRK could be determined.

Human NMNAT was overexpressed in E. coli and was purified by

following a published protocol (Zhou et al., 2002). The reaction buffer

contained 50 mM Tris (pH 7.5), 100 mM NaCl, various concentrations

of NR, 2.5 mM ATP, 12 mM MgCl2, 1.5% (v/v) ethanol, 10 mM semicar-

bazide (to remove the acetaldehyde product of ethanol oxidation),

0.02% (w/v) BSA, 10 mg/ml NMNAT, 30 mg/ml alcohol dehydrogenase,

and 0.2 mM NRK. The reactions are carried out at room temperature.

For the mutants, the reactions were monitored at 25 mM substrate

concentration.
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